Cellular Redistribution of Protein Tyrosine Phosphatases LAR and PTPσ by Inducible Proteolytic Processing
نویسندگان
چکیده
Most receptor-like protein tyrosine phosphatases (PTPases) display a high degree of homology with cell adhesion molecules in their extracellular domains. We studied the functional significance of processing for the receptor-like PTPases LAR and PTPsigma. PTPsigma biosynthesis and intracellular processing resembled that of the related PTPase LAR and was expressed on the cell surface as a two-subunit complex. Both LAR and PTPsigma underwent further proteolytical processing upon treatment of cells with either calcium ionophore A23187 or phorbol ester TPA. Induction of LAR processing by TPA in 293 cells did require overexpression of PKCalpha. Induced proteolysis resulted in shedding of the extracellular domains of both PTPases. This was in agreement with the identification of a specific PTPsigma cleavage site between amino acids Pro821 and Ile822. Confocal microscopy studies identified adherens junctions and desmosomes as the preferential subcellular localization for both PTPases matching that of plakoglobin. Consistent with this observation, we found direct association of plakoglobin and beta-catenin with the intracellular domain of LAR in vitro. Taken together, these data suggested an involvement of LAR and PTPsigma in the regulation of cell contacts in concert with cell adhesion molecules of the cadherin/catenin family. After processing and shedding of the extracellular domain, the catalytically active intracellular portions of both PTPases were internalized and redistributed away from the sites of cell-cell contact, suggesting a mechanism that regulates the activity and target specificity of these PTPases. Calcium withdrawal, which led to cell contact disruption, also resulted in internalization but was not associated with prior proteolytic cleavage and shedding of the extracellular domain. We conclude that the subcellular localization of LAR and PTPsigma is regulated by at least two independent mechanisms, one of which requires the presence of their extracellular domains and one of which involves the presence of intact cell-cell contacts.
منابع مشابه
SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LA...
متن کاملPerturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury
BACKGROUND Traumatic spinal cord injury (SCI) results in upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia that impedes repair and regeneration in the spinal cord. Degradation of CSPGs is known to be beneficial in promoting endogenous repair mechanisms including axonal sprouting/regeneration, oligodendrocyte replacement, and remyelination, and is associated with improve...
متن کاملDiverse functions of protein tyrosine phosphatase σ in the nervous and immune systems
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essent...
متن کاملStructural insights into the homology and differences between mouse protein tyrosine phosphatase-sigma and human protein tyrosine phosphatase-sigma.
Protein tyrosine phosphatases PTP-sigma (PTPσ) plays an important role in the development of the nervous system and nerve regeneration. Although cumulative studies about the function of PTPσ have been reported, yet limited data have been reported about the crystal structure and in vitro activity of mouse PTPσ. Here we report the crystal structure of mouse PTPσ tandem phosphatase domains at 2.4 ...
متن کاملProtein tyrosine phosphatase-σ regulates hematopoietic stem cell-repopulating capacity.
Hematopoietic stem cell (HSC) function is regulated by activation of receptor tyrosine kinases (RTKs). Receptor protein tyrosine phosphatases (PTPs) counterbalance RTK signaling; however, the functions of receptor PTPs in HSCs remain incompletely understood. We found that a receptor PTP, PTPσ, was substantially overexpressed in mouse and human HSCs compared with more mature hematopoietic cells....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 138 شماره
صفحات -
تاریخ انتشار 1997